Acknowledgment. This work was supported by NIH Grant No. GM-15310.
R. C. Lord,* R. Mendelsohn

Department of Chemistry and Spectroscopy Laboratory Massachusetts Institute of Technology Cambridge, Massachusetts 02139

Received January 6, 1972

Metal Ion-Aromatic Complexes. XIV. Structural Evidence for the $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ Species in $\mathrm{Ar} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$

 Sir:We report here the surprising and previously unknown dimer, $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$, in $\mathrm{Ar} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$ where Ar $=\mathrm{C}_{6} \mathrm{H}_{6}$ (I) or p-xylene (II). These complexes also include an axially symmetric aromatic- Sn (II) bond.

In an earlier communication ${ }^{1}$ we reported the structure of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ which consists of a pentagonal-bipyramidal $\mathrm{Sn}(\mathrm{II})$ entity $\left(6 \mathrm{Cl}, \quad 1 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ wherein the metal ion lies along the sixfold axis of the benzene ring. In this structure the second aromatic molecule is not coordinated to the metal but resides in a cleft in the $\operatorname{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}$ chain. Very recently we have completed the crystal structure determination of $\mathrm{C}_{6} \mathrm{H}_{6}$. $\mathrm{Pb}\left(\mathrm{AlCl}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)^{2}$ which is structurally similar to the analogous Sn compound.

For a variety of experimental reasons we have been unsuccessful in isolating crystalline aromatic $\mathrm{Sn}(\mathrm{II})$ complexes of the type $\operatorname{Ar} \cdot \operatorname{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}$ under a wide variety of experimental conditions. However, we have succeeded in isolating interesting compounds of the type $\mathrm{Ar} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$ which contain a $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ moiety. We report on two of these structures at this time.
$\mathrm{Ar} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$ was prepared by placing purified $\mathrm{SnCl}_{2}(0.044 \mathrm{~mol})$ and $\mathrm{AlCl}_{3}(0.075 \mathrm{~mol})$ in one arm of an " H " tube. ${ }^{3}$ Dry, degassed aromatic was sublimed into the system and allowed to come to room temperature and then heated to $\sim 50^{\circ}$ for 1 hr . While the reaction was still warm it was filtered in vacuo and the excess solvent removed by immersion of one arm in a liquid nitrogen trap until crystals formed. The crystals could be repeatedly recrystallized from benzene.

Compounds I and II exhibited the following crystal data.
$\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathbf{S n C l}\left(\mathrm{AlCl}_{4}\right)(\mathrm{I}): \quad P 2_{1} / n ; \quad Z=4 ; \quad \rho_{\mathrm{c}}=2.02$ $\mathrm{g} \mathrm{cm}^{-3}, \rho_{0}=2.1 \mathrm{~g} \mathrm{~cm}^{-3} ; a=19.624$ (6) $\AA, b=9.531$ (1) $\AA, c=7.099$ (1) $\AA ; \beta=93.65$ (1) ${ }^{\circ}$; number of observations used in solution and refinement of structure $=2446 ; \mu=27.3 \mathrm{~cm}^{-1} ;$ crystal size 0.33×0.43 $\times 0.70 \mathrm{~mm}$; transmission coefficient variation, ${ }^{4} 0.47-$ $0.50 ; \lambda=0.71068 \AA$.

$$
p-\mathrm{C}_{8} \mathrm{H}_{10} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right) \quad \text { (II): } \quad I 2 / c ; \quad Z=8 ; \rho_{\mathrm{c}}=
$$ $1.86 \mathrm{~g} \mathrm{~cm}^{-3}, \rho_{\circ} \sim 1.7 \mathrm{~g} \mathrm{~cm}^{-3} ; a=18.970$ (7) $\AA, b=$ 10.903 (4) $\AA, c=15.470$ (4) $\AA ; \beta=107.33(1)^{\circ}$; number of observations used in solution and refinement of structure $=2476 ; \mu=25.5 \mathrm{~cm}^{-1}$; crystal size 0.30 $\times 0.15 \times 0.60 \mathrm{~mm}$; transmission coefficient variation, ${ }^{4}$ $0.47-0.71 ; \lambda=0.71068 \AA$.

[^0]

Figure 1. Perspective view of the structure of $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$ down the b axis. The $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ dimer is composed of atoms $\mathrm{Sn}(1)$, $\mathrm{Cl}(5), \mathrm{Cl}\left(5^{\prime}\right)$, and $\mathrm{Sn}\left(1^{\prime}\right)$. The $\mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)^{+}$chain goes from $\operatorname{Sn}\left(1^{\prime \prime \prime}\right)$ at the lower far left through $\mathrm{Sn}(1)$ to $\mathrm{Sn}\left(1^{\prime \prime \prime}\right)$ at the far right. Esd's for interatomic distances are $\mathrm{Sn}-\mathrm{Cl} \pm 0.005 \AA, \mathrm{Al}-\mathrm{Cl} \pm 0.007 \AA$, and $\mathrm{Sn}-\mathrm{C} \pm 0.02 \AA$. The angle between the normal to the ring and Sn center of the ring is $7 \pm 1^{\circ}$.

Single crystal intensity data were collected on a Picker automated diffractometer by standard techniques. ${ }^{5}$ The structures were solved by standard heavy atom techniques and refined by full-matrix least squares. ${ }^{5}$ I refined to a final conventional R of 0.070 and II to a final R of 0.049 . Although the crystals of I and II are not isomorphous, the structures are quite similar in spite of the differing steric requirements of the aromatic moieties. The most prominent and unexpected feature of the structures is the presence of the lozenge-shaped dimer (Figure 1) with $\mathrm{Sn}-\mathrm{Cl}$ distances of $\sim 2.6 \AA$. These structures are the first reports of such species which may be formally considered as $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ units. The coordination polyhedron of each Sn is completed by three longer $\mathrm{Sn}-\mathrm{Cl}$ interactions ranging from 2.8 to $3.3 \AA$ and an axially symmetric Sn -aromatic bond to produce a distorted octahedron $\left(5 \mathrm{Cl}, 1 \mathrm{C}_{6} \mathrm{H}_{6}\right)$ (Figure 2). One might ask the question whether the dimer is indeed the structural building block as we maintain, since the $\mathrm{Sn}-\mathrm{Cl}$ distances vary between 2.61 and $3.33 \AA$ in these two structures. We reason as follows. (1) In I the $\mathrm{Sn}-\mathrm{Cl}$ lozenge distances are 2.61 and $2.66 \AA$ with the next shortest distance at $2.84 \AA$ ($\mathrm{Sn}-\mathrm{Cl}$ axial), and in II the lozenge $\mathrm{Sn}-\mathrm{Cl}$ distances are 2.62 and $2.68 \AA$ with the next shortest $\mathrm{Sn}-\mathrm{Cl}$ distance at $2.92 \AA$. Hence, the $\mathrm{Sn}-\mathrm{Cl}$ distances within the dimer are always the shortest, and the next shortest $\mathrm{Sn}-\mathrm{Cl}$ distance is at least $0.18 \AA$ longer. Furthermore, the next shortest distances are associated with chlorine atoms bound to $\mathrm{AlCl}_{4}{ }^{-}$units and are expected to be weaker. (2) These 2.61-2.68- \AA bridging $\mathrm{Sn}-\mathrm{Cl}$ distances are essentially
(5) For data collection methods, weighting scheme, computer programs, and source of scattering factors, see R. L. Girling and E. L. Amma, Inorg. Chem., 10, 335 (1971). Data for I and II were collected on a Picker card-controlled diffractometer. Listings of structure factors, coordinates, and anisotropic temperature factors will appear following these pages in the microfilm edition of this volume of the journal. Single copies may be obtained from the Business Operations Office, Books and Journals Division, American Chemical Society, 1155 Sixteenth St., N.W., Washington, D. C. 20036, by referring to code number JACS-72-2135. Remit check or money order for $\$ 4.00$ for photocopy or $\$ 2.00$ for microfiche.

$\mathrm{SN}_{\mathrm{N}}\left(\mathrm{KACC}_{14}\right) \mathrm{C}_{8} \mathrm{H}_{10}$
Figure 2. View of the structure of p-xylene $\cdot \mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$ showing the immediate environment about $\operatorname{Sn}(\mathrm{II})$ including the axially symmetric $\mathrm{Sn}-\mathrm{Ar}$ interaction. Esd's are all approximately threequarters of those in Figure 1. The angle between the normal to the ring and the Sn center of the ring is $8 \pm 1^{\circ}$. For both compounds the rings are planar well within experimental error.
the same length as the shortest $\mathrm{Sn}-\mathrm{Cl}$ distance found in anhydrous stannous chloride ${ }^{6}(2.66 \AA$). Anhydrous stannous chloride may be described as pyramidal $\mathrm{Sn}(\mathrm{II})$ forming a chlorine-bridged chain structure. In addition, the $\mathrm{Sn}-\mathrm{Cl}$ distances in $\mathrm{SnCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{7}$ are $2.59 \AA$ while those in the $\mathrm{SnCl}_{3}{ }^{-}$ion are 2.63 and 2.54 $\AA .{ }^{8}$ (3) The $\mathrm{Sn}-\mathrm{Cl}$ distances in $\mathrm{C}_{6} \mathrm{H}_{6} \cdot \mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)^{1}$ are all $2.77 \AA$ or greater. As a consequence, we feel that the $2.61-2.68-\AA$ distance represents a more substantial $\mathrm{Sn}-\mathrm{Cl}$ bond than any other in the $\mathrm{Ar} \cdot \mathrm{SnCl}-$ (AlCl_{4}) structures and is an important structural feature of these compounds.

The phase diagram of the $\mathrm{SnCl}_{2} \cdot \mathrm{AlCl}_{3}{ }^{9}$ system indicates a compound of the composition $\mathrm{SnCl}\left(\mathrm{AlCl}_{4}\right)$. It may well be that the $\mathrm{Sn}_{2} \mathrm{Cl}_{2}{ }^{2+}$ unit is a structural feature of this compound also.

It is to be noted that the Sn -aromatic interaction is essentially axially symmetric and along with $\mathrm{C}_{6} \mathrm{H}_{8}$. $\mathrm{Sn}\left(\mathrm{AlCl}_{4}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ represents the only known cases of axially symmetric complexes between post-transition metal ions and aromatic moieties.

The overall crystal structure might be described as made up of $\left(\mathrm{SnAlCl}_{4}\right)_{n}$ chains (Figure 1) in which the $\mathrm{AlCl}_{4}{ }^{-}$tetrahedra are bonded together by $\mathrm{Sn}-\mathrm{Cl}$ bonds, $\mathrm{Sn}-\mathrm{Cl}(1), \mathrm{Cl}\left(2^{\prime \prime}\right), \mathrm{Cl}\left(4^{\prime \prime}\right)$. These chains are in turn interconnected via the formation of the dimers mentioned above.

Acknowledgment. We are grateful to the National Science Foundation GP-28680 for support.
(6) J. M. van den Berg, Acta Crystallogr., 14, 1002 (1961).
(7) B. Kamenar and D. Grdenic, J. Chem. Soc., 3954 (1961).
(8) B. Kamenar and D. Grdenic, J. Inorg. Nucl. Chem., 24, 1039 (1962).
(9) (a) J. Kendall, E. Crittenden, and H. K. Miller, J. Amer. Chem. Soc., 45, 963 (1923); (b) R. F. Belt and H. Scott, Inorg. Chem., 3, 1785 (1964).
M. S. Weininger, P. F. Rodesiler A. G. Gash, E. L. Amma*

Department of Chemistry, University of South Carolina,
Columbia, South Carolina 29208 Received October 16, 1971

Stereochemistry of 1,3 Eliminations from Dibromo Sulfoxides

Sir:
In general, the 1,3 -elimination reactions ${ }^{1}$ studied to date have exhibited preferences for W eliminations (inversion at each center) ${ }^{2-7}$ and exo sickle eliminations (retention at the carbon atom bearing the electrofugal group and inversion at the carbon bearing the nucleofugal group). ${ }^{8-10}$ In the cases of the W eliminations, the systems studied were either rigid polycyclic systems in which the groups were held in the W conformations ${ }^{4,6,7}$ or acyclic systems in which the stereochemical results could have been interpreted as being U eliminations ${ }^{1}$ (retention at each center) rather than W eliminations. We wish to report a W-1,3 debromination of the dibromo sulfoxides 1 and 2 with hexamethylphosphorictriamide, $\left(\mathrm{Me}_{2} \mathrm{~N}\right)_{3} \mathrm{P}$, wherein the U elimination can be excluded.

Loss of bromine from meso- 2 with double inversion would give the cis,anti-episulfoxide 3, while loss with double retention would result in the formation of the cis,syn-episulfoxide 4.

The sulfoxides $\mathbf{1}$ and $\mathbf{2}$ were synthesized in a manner analogous to that reported earlier for $1 .{ }^{11}$ Bromination $\left(\mathrm{Br}_{2}-\mathrm{CCl}_{4}\right)$ of dibenzyl sulfide followed by oxidation of the crude bis(α-bromobenzyl) sulfide in methylene chloride at 0° with 1 equiv of m-chloroperbenzoic acid
(1) A. Nickon and N. H. Werstiuk, J. Amer. Chem. Soc., 89, 3914 (1967).
(2) F. G. Bordwell, B. B. Jarvis, and P. W. R. Corfield, ibid., 90, 5298 (1968).
(3) F. G. Bordwell, E. Doomes, and P. W. R. Corfield, ibid., 92, 2581 (1970).
(4) L. A. Paquette and R. W. Houser, ibid., 91, 3870 (1969).
(5) B. M. Trost, W. L. Schinski, and I. B. Mantz, ibid., 91, 4321 (1969).
(6) R. E. Pincock and E. J. Torupka, ibid., 91,4592 (1969).
(7) E. J. Corey and E. Block, J. Org. Chem., 34, 1233 (1969).
(8) A. Nickon and N. H. Werstiuk, J. Amer. Chem. Soc., 89, 3915, 3917 (1967).
(9) S. J. Cristol, A. R. Dahl, and W. Y. Lim, ibid., 92, 5670 (1970).
(10) N. H. Werstiuk, J. Chem. Soc. D, 1499 (1970).
(11) L. A. Carpino and H. W. Chen, J. Amer. Chem. Soc., 93, 785 (1971).

[^0]: (1) H. Luith and E. L. Amma, J. Amer. Chem. Soc., 91, 7515 (1969).
 (2) A. G. Gash, P. F. Rodesiler, and E. L. Amma, to be published.
 (3) R. W. Turner and E. L. Amma, J. Amer. Chem. Soc., 88, 1877 (1966).
 (4) Absorption corrections were made with a local variation of program GONO 9 originally written by W. C. Hamilton, Brookhaven National Laboratory, Upton, N. Y.

